Abercrombie, G., & Batista-Navarro, R. (2020). Sentiment and position-taking analysis of parliamentary debates: A systematic literature review. Journal of Computational Social Science, 3(1), 245–270.
Albalawi, R., Yeap, T. H., & Benyoucef, M. (2020). Using topic modeling methods for short-text data: A comparative analysis. Frontiers in Artificial Intelligence, 3, 42.
Allen, C., & Murdock, J. (2020). LDA topic modelling: Context for the history & philosophy of science [Preprint]. http://philsci-archive.pitt.edu/17261/
Arun, R., Suresh, V., Veni Madhavan, C., & Murthy, N. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. 391–402.
Bayley, P. (2004). Cross-cultural perspectives on parliamentary discourse (Vol. 10). John Benjamins Publishing.
Bergmann, H., Geese, L., Koss, C., & Schwemmer, C. (2018). Using legislative speech to unveil conflict between coalition parties [Preprint]. SocArXiv. https://doi.org/10.31235/osf.io/pgnwa
Blätte, A., Gehlhar, S., & Leonhardt, C. (2020). The Europeanization of Parliamentary Debates on Migration in Austria, France, Germany, and the Netherlands. 66–74.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022.
Brezovšek, M., Haček, M., Ferfila, B., & Zajc, D. (2012). Politični sistem Republike Slovenije. Fakulteta za družbene vede.
Chizhik, A. V., & Sergeyev, D. A. (2021). Exploring the Parliamentary Discourse of the Russian Federation Using Topic Modeling Approach. 403–416.
Curran, B., Higham, K., Ortiz, E., & Vasques Filho, D. (2018). Look who’s talking: Two-mode networks as representations of a topic model of New Zealand parliamentary speeches. PLOS ONE, 13(6), e0199072. https://doi.org/10.1371/journal.pone.0199072
de Campos, L. M., Fernandez-Luna, J. M., Huete, J. F., & Redondo-Expósito, L. (2021). LDA-based term profiles for expert finding in a political setting. Journal of Intelligent Information Systems, 56(3), 529–559.
Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., & Starič, A. (2013). Orange: Data mining toolbox in Python. The Journal of Machine Learning Research, 14(1), 2349–2353.
DZ RS (Državni zbor Republike Slovenija) (2020). ZIUZEOP: Zakon o interventnih ukrepih za zajezitev epidemije COVID-19 in omilitev njenih posledic za državljane in gospodarstvo (Uradni list RS, št. 49/20, 61/20, 67/20, 80/20 - ZIUOOPE, 101/20 - skl. US, 152/20 - ZZUOOP, 175/20 - ZIUOPDVE, 203/20 - ZIUPOPDVE, 15/21 - ZDUOP). http://www.pisrs.si/Pis.web/pregledPredpisa?id=ZAKO8190
Erjavec, T., et al. (2021).
Multilingual comparable corpora of parliamentary debates ParlaMint 2.1, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,
http://hdl.handle.net/11356/1432.
Erjavec, T., Ogrodniczuk, M., Osenova, P., & et al. (2022). The ParlaMint corpora of parliamentary proceedings. Lang Resources & Evaluation. https://doi.org/10.1007/s10579-021-09574-0
Erjavec, T., & Pančur, A. (2019). Parla-CLARIN: TEI guidelines for corpora of parliamentary proceedings. Book of Abstracts of the TEI2019: What Is Text, Really.
Fišer, D., & Pahor de Maiti, K. (2021). » Prvič, sem političarka in ne politik, drugič pa…«. Contributions to Contemporary History, 61(1). https://doi.org/10.51663/pnz.61.1.07
Gkoumas, D., Pontiki, M., Papanikolaou, K., & Papageorgiou, H. (2018). Exploring the Political Agenda of the Greek Parliament Plenary Sessions (D. Fišer, M. Eskevich, & F. de Jong, Eds.).
Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3), 267–297.
Høyland, B., & Søyland, M. G. (2019). Electoral reform and parliamentary debates. Legislative Studies Quarterly, 44(4), 593–615.
Ilie, C. (2010). European parliaments under scrutiny: Discourse strategies and interaction practices (Vol. 38). John Benjamins Publishing.
Jacobs, T., & Tschötschel, R. (2019). Topic models meet discourse analysis: A quantitative tool for a qualitative approach. International Journal of Social Research Methodology, 22(5), 469–485.
Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation.
Kilroy, D. (2021). All the king’s men? A demographic study of opinion in the first English Parliament of James I, 1604–10. Parliaments, Estates and Representation, 41(1), 1–23.
Martin, F., & Johnson, M. (2015). More efficient topic modelling through a noun only approach. 111–115.
Meeks, E., & Weingart, S. B. (2012). The digital humanities contribution to topic modeling. Journal of Digital Humanities, 2(1), 1–6.
Mollin, S. (2007). The Hansard hazard: Gauging the accuracy of British parliamentary transcripts. Corpora, 2(2), 187–210.
Morstatter, F., Shao, Y., Galstyan, A., & Karunasekera, S. (2018). From alt-right to alt-rechts: Twitter analysis of the 2017 German federal election. 621–628.
Müller-Hansen, F., Callaghan, M. W., Lee, Y. T., Leipprand, A., Flachsland, C., & Minx, J. C. (2021). Who cares about coal? Analyzing 70 years of German parliamentary debates on coal with dynamic topic modeling. Energy Research & Social Science, 72, 101869.
Norton, P. (2002). Parliaments and citizens in Western Europe (Vol. 3). Psychology Press.
Pančur, A., & Šorn, M. (2016). Digitalni pristop k parlamentarni zgodovini: Uporaba gradiva Državnega zbora v digitalni humanistiki. Četrt stoletja Republike Slovenije - izzivi, dileme, pričakovanja, 115–126.
Petukhova, V., Malchanau, A., & Bunt, H. (2015). Modelling argumentation in parliamentary debates (M. Baldoni & et al., Eds.). Springer.
Piersma, H., Tames, I., Buitinck, L., Van Doornik, J., & Marx, M. (2014). War in parliament: What a digital approach can add to the study of parliamentary history. Digital Humanities Quarterly, 8(1).
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.
Proksch, S.-O., & Slapin, J. B. (2010). Position taking in European Parliament speeches. British Journal of Political Science, 40(3), 587–611.
RS RS (Računsko sodišče Republike Slovenije) (2021). Revizijsko poročilo: Učinkovitost nabav zaščitne in medicinske opreme za obvladovanje širjenja virusa SARS-CoV-2, 17. 3. 2021. https://www.rs-rs.si/fileadmin/user_upload/Datoteke/Revizije/2021/ZascitnaOprema/ZascitnaOprema2020_RSP_RevizijskoP.pdf.
Rheault, L., Beelen, K., Cochrane, C., & Hirst, G. (2016). Measuring emotion in parliamentary debates with automated textual analysis. PloS One, 11(12), e0168843.
Rheault, L., & Cochrane, C. (2020). Word embeddings for the analysis of ideological placement in parliamentary corpora. Political Analysis, 28(1), 112–133.
Rosa, A. B., Gudowsky, N., & Repo, P. (2021). Sensemaking and lens-shaping: Identifying citizen contributions to foresight through comparative topic modelling. Futures, 129, 102733.
Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Emrich, Š., & Sedlmair, M. (n.d.). Supervised Sentiment Analysis of Parliamentary Speeches and News Reports.
Schmidt, B. M. (2012). Words alone: Dismantling topic models in the humanities. Journal of Digital Humanities, 2(1), 49–65.
Schuler, P. (2020). Position taking or position ducking? A theory of public debate in single-party legislatures. Comparative Political Studies, 53(9), 1493–1524.
Serrano, J. C. M., Shahrezaye, M., Papakyriakopoulos, O., & Hegelich, S. (2019). The rise of Germany’s AfD: A social media analysis. 214–223.
Shadrova, A. (2021). Topic models do not model topics: Epistemological remarks and steps towards best practices. Journal of Data Mining & Digital Humanities, 2021.
Sieberer, U., Müller, W. C., & Heller, M. I. (2011). Reforming the rules of the parliamentary game: Measuring and explaining changes in parliamentary rules in Austria, Germany, and Switzerland, 1945–2010. West European Politics, 34(5), 948–975.
Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. 63–70.
Smith, N., & Graham, T. (2019). Mapping the anti-vaccination movement on Facebook. Information, Communication & Society, 22(9), 1310–1327.
Truan, N., & Romary, L. (2021). Building, Encoding, and Annotating a Corpus of Parliamentary Debates in XML-TEI: A Cross-Linguistic Account. Journal of the Text Encoding Initiative.
van der Zwaan, J. M., Marx, M., & Kamps, J. (2016). Validating Cross-Perspective Topic Modeling for Extracting Political Parties’ Positions from Parliamentary Proceedings. 28–36.
Vayansky, I., & Kumar, S. A. (2020). A review of topic modeling methods. Information Systems, 94, 101582.
Vlada Republike Slovenije (2020). Obrazložitev splošnega dela predloga rebalansa proračuna Republike Slovenije za leto 2020. https://www.gov.si/assets/ministrstva/MF/Proracun-direktorat/Drzavni-proracun/Sprejeti-proracun/Rebalans-2020/Obr-splosni-del-in-politike/REB20_obrsplosnidel.pdf.
Wiedemann, G. (2016). Text mining for qualitative data analysis in the social sciences (Vol. 1). Springer.
Zhao, W., Chen, J. J., Perkins, R., Liu, Z., Ge, W., Ding, Y., & Zou, W. (2015). A heuristic approach to determine an appropriate number of topics in topic modeling. 16(13), 1–10.